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Abstract— This article presents a novel hybrid electromagnetic
inversion method. The traditional 3-D variational Born iter-
ative method (VBIM) is combined with the unsupervised
machine-learning expectation maximization (EM). In each itera-
tion, VBIM first outputs the pseudo-randomly distributed model
parameters in all discretized cells in the inversion domain. Then
the EM algorithm is used to classify them and estimate the
mean model parameter values of each homogeneous scatterer or
subscatterer supposing that the reconstructed model parameters
in all cells comply with the Gaussian mixture model (GMM).
At last, partial cells in the inversion domain classified as “back-
ground” will be removed and the unknowns in the next VBIM
iteration are reduced. This process is implemented iteratively
until no “background” cell can be removed anymore and the data
misfit between the measured scattered field and reconstructed
field reaches the stop criterion. Finally, the mean value of the
model parameter estimated by EM is mandatorily assigned for
each homogeneous scatterer or subscatterer. Numerical examples
show that the proposed hybrid method works efficiently for the
reconstruction of isotropic, anisotropic, homogeneous, or inho-
mogeneous scatterers. It also has a certain antinoise ability.

Index Terms— Electromagnetic full-wave inversion (FWI),
expectation maximization (EM), machine learning, variational
Born iterative method (VBIM).

I. INTRODUCTION

ELECTROMAGNETIC inversion utilizes field data col-
lected at the receiver array to infer the model parameters

of unknown targets located in a specific region. It has wide
applications for subsurface nondestructive testing [1], airborne
transient electromagnetics [2], geophysical well logging [3],
through the wall imaging [4], unexploded ordnance identifica-
tion [5], etc. In strong electromagnetic scattering applications,
i.e., when the contrast of the scatterer with respect to the
background medium is high or its electrical size is large,
the nonlinearity usually requires iterations to obtain optimized
model parameters of scatterers.

There are two types of iterative full-wave inversion (FWI)
methods if we classify them according to the availability of
a priori information of the model parameters in the inversion
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domain. One is the model-based inversion in which partial
a priori information is obtained in advance. Consequently,
the dimension of the vector of unknowns in the inversion
can be immediately reduced or reduced in a transformed
domain [6]. This helps to mitigate the ill-posedness of the
electromagnetic inverse problem and acquire more accurate
solutions. However, the model-based inversion usually requires
that we know the general locations or approximate shapes
of the scatterers before implementing the iterative inversion.
On the contrary, the voxel-based inversion directly solves
for all the model parameters in all the discretized cells
without incorporating any a priori information. Because the
straightforward way to describe electromagnetic scattering is
using the integral equation, it is convenient to formulate the
voxel-based FWI in the framework of the state equation and
the data equation [7]. The commonly used methods include the
Born iterative method (BIM), contrast source inversion (CSI),
and subspace-based optimization method (SOM), etc. In the
BIM [8], the state and data equations are solved alternately to
update the total fields and model parameters alternately [9].
Different from BIM, CSI has no forward computation [10].
The cost function is constructed using the summation of
mismatches in the data equation and the state equation.
The induced current and dielectric contrasts in the inversion
domain are updated alternately until the total mismatches reach
minima [11]. SOM is implemented similar to CSI but for a
subspace of the induced current [12], [13]. There are also
several variants related to the aforementioned three methods
such as distorted BIM (DBIM) or variational BIM (VBIM)
[9], [14]. Detailed voxel-based electromagnetic FWI methods
are summarized in [15] and readers can refer to it. These
methods can be used to reconstruct the dielectric parameters
of 3-D scatterers with arbitrary inhomogeneity. However,
the iteration computational cost is also high, especially for
the scatterer with large electrical size.

Thanks to the fast development of computing technology
in recent years, various artificial neural networks (ANN) are
being widely used in electromagnetic FWI. Compared with
the traditional iterative methods, the FWI based on ANN
has the obvious advantage of fast computation in online
prediction. It can be categorized into four kinds [16]. The
first kind is the direct learning in which the ANN directly
learns the mapping relation between the model parameters of
the scatterers and the recorded scattered field at the receiver
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array in the training. The design architecture of ANN in the
direct learning is straightforward. However, the ANN must
spend unnecessary cost to train and learn the underlying
wave physics of electromagnetic scattering. Representative
works have been presented in [17]–[19]. The second kind
is learning-assisted objective-function approach in which the
ANN and the traditional iterative solver are hybridized. The
ANN usually provides preliminary dielectric images of scat-
terers, and traditional FWI iterations are implemented starting
from these preliminary images. For example, in [20] and [21],
the convolutional neural network (CNN) is first used to
reconstruct the dielectric images from magnetic resonance or
ultrasound images of tissues, and then the traditional iterative
method is used to further refine the dielectric parameter
distribution of the tissues. In [22], the Contrast Source Net
is proposed to learn the total contrast source, which effec-
tively improves the reconstruction accuracy of the following
connected iterative solver. In [23], the CNN U-Net first finds
the compressed inversion domain, which is close to the true
shape of the scatterer, and then the BIM is implemented
to invert for the dielectric parameters of the scatterer in
the downsized computational region. Because the FWI starts
from good initial values of the model parameters, the final
reconstructed parameters are more accurate. The third kind is
the physics-assisted learning approach, which is also a kind of
hybrid method. However, compared with the second method,
the ANN is used to reconstruct the final model parameters
of the scatterers instead of the iterative solver. The input
of the ANN is usually a preliminary image of the scatterer,
which is often obtained by an approximate inverse solver,
e.g., Born approximation (BA) or back propagation (BP).
Related research work has been presented in [17], [24]–[27].
The advantage of this kind of method is that both the input
and output of the ANN have the same data type, usually the
scatterer dielectric images. Therefore, we can directly adopt
the mature ANN structure used in image processing almost
without modification. Besides these three kinds, there are also
other ways to combine ANN and electromagnetic inversion.
For example, in [28], Wei and Chen proposed the induced
current-learning method. They cascaded several CNNs with
relatively simple structures and completed the final inversion
of dielectric parameters by learning the equivalent current
on the scatterer step by step. Summary and review of the
ANN and applications to electromagnetic inversion can be
referred to in [29], [30]. In addition, there is another type
of learning-based electromagnetic FWI, which utilizes the
support vector machine (SVM) to localize the underground
buried object. Compared with ANN, it can avoid the typical
drawbacks such as overfitting or local minima occurrence.
Readers can refer to [29], [31] for the application of SVM
to FWI.

However, in most of the aforementioned works, machine
learning is supervised, i.e., the ANN must be trained by a
large number of samples before being used to perform the
nonlinear inversion. In this article, we explore the possible
hybridization of unsupervised machine learning and tradi-
tional 3-D voxel-based iterative inversion. As we know, both
the supervised and unsupervised machine-learning techniques

heavily depend on sample data. Only when the system learns
from enough historical sample data can it build the precise
prediction models. The prediction accuracy depends upon the
amount of data. In the 3-D voxel-based electromagnetic inver-
sion, there are two sets of sample data, the scattered field data
recorded at all the receivers and the model parameters in all the
discretized cells in the inversion domain. We will focus on
the second set in this work and assume that all the scatterers in
the inversion domain can be divided into several homogeneous
subscatterers. Because the 3-D voxel-based electromagnetic
inversion problem is usually ill-posed and underdetermined,
the model parameters in all discretized cells solved by the
iterative method, e.g., VBIM, are pseudorandom when the
number of discretized cells is large enough [32]. According
to the central limit theorem of the statistics, the reconstructed
model parameters in each iteration of VBIM in the discretized
cells belonging to each homogeneous subscatterer will auto-
matically follow the Gaussian distribution. Its mean value
is close to the true model parameter of each homogeneous
subscatterer. If there is more than one model parameter, e.g.,
both the permittivity and conductivity used to simultaneously
depict the homogeneous subscatterer, joint Gaussian distribu-
tion can be adopted. Usually, besides the background medium,
there are always several homogeneous scatterers or subscat-
terers in the inversion domain. Therefore, a Gaussian mixture
model (GMM) is the best choice to describe the reconstructed
model parameter distribution for all the discretized cells in
the whole inversion domain. One of the efficient unsupervised
machine-learning techniques used to classify the sample data
complying with a GMM is the expectation maximization
(EM) [33]. In this article, we combine VBIM with the EM
algorithm to reconstruct 3-D scatterers embedded in a layered
medium. In each iteration, the retrieved model parameters
from VBIM are classified by the EM algorithm and the size
of the computation domain is reduced. When iterations of
VBIM terminate, mandatory assignments of the reconstructed
parameter values are implemented to guarantee the consistency
of model parameters of all the homogeneous scatterers or
subscatterers. The details will be discussed in Section II.

The organization of this article is as follows: In Section II,
the forward model and the inversion model for traditional
electromagnetic inversion are briefly described. Then the
machine-learning EM algorithm and its hybridization with
VBIM are presented in detail. In Section III, three numerical
examples are presented to verify the proposed hybrid method.
The first one is for an isotropic scatterer. The second one
demonstrates how to determine the EM classification number
and tests the antinoise ability. And in the third example,
a fully anisotropic and inhomogeneous scatterer is considered.
Finally, in Section IV, conclusions are drawn and discussions
are presented.

II. METHODS

In this section, we briefly describe the forward and inverse
scattering formulas with the volume integral equation. In addi-
tion, we will discuss the hybridization of the iterative inversion
algorithm VBIM with the machine-learning EM algorithm in
detail.
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A. Forward Model

The forward model is formulated by the state equations,
which can be expressed as
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where En
inc and Hn

inc are the incident fields evaluated in the
nth layer when the scatterers are absent. Dn

tot and Bn
tot are

the total flux densities in the nth layer when the scatterers
are present. G

nm

EJ , G
nm

EM, G
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nm

HM are the layered
medium dyadic Green’s functions [34] linking scatterers in
the mth layer and field values in the nth layer. Equation (1)
is formulated for the anisotropic magnetodielectric scattering
scenario and its weak forms can be found in [35]. However,
it is straightforward to simplify it to account for isotropic
scattering [36] or nonmagnetic scattering scenarios [37]. In the
forward scattering computation, we let n = m and (1) is
discretized and total fields Dm

tot and Bm
tot are solved by the

stabilized biconjugate-gradient fast Fourier transform (BCGS-
FFT) [35], [38], [39].

B. Inversion Model

The inversion model is formulated by the data equations,
which can be expressed as
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where En
sct and Hn

sct are the scattered fields measured at the
receiver arrays in the nth layer. In the inverse scattering
computation, (2) is discretized and the model parameters χ
are solved by VBIM [14], [35], [40], [41]. For electromagnetic
iterative inversion, (1) and (2) are solved alternately, and thus
the total fields and contrasts are updated alternately until the
misfit of measured scattered field reaches a stop criterion.

C. EM Algorithms Applied to VBIM Results

As mentioned in Section I, the reconstructed model para-
meters in all the discretized cells in each VBIM iteration
step comply with the GMM model. The machine-learning EM
algorithm based on maximum likelihood estimation (MLE) is

Algorithm 1 EM
1: procedure
2: Ini tiali ze ω1

i , μ1
mi and σ 1

mi
3: //wi is the weighting factor.
4: //μmi is the mean of the mth model parameter.
5: //σmi is the variance of the mth model parameter.
6: classification:
7: for each k ∈ [1 . . . K ] do
8: //K is the maximum iteration number.
9: for each n ∈ [1 . . . N] do //N is the cell number.

10: for each i ∈ [0, 1 . . . I ] do
11: //I is homogeneous subscatterer number.

12: Pk
in = ∏M

m=1
1√

2πσ k
mi

exp

(
− (sm−μk

mi)
2

2(σ k
mi )

2

)

13: //Pk
in is the probability value.

14: //sm is mth model parameter from VBIM.
15: end for
16: end for
17: for each n ∈ [1 . . . N] do
18: Label(n) = argmaxi Pk

in //classification
19: end for
20: for each i ∈ [0, 1 . . . I ] do
21: get ωk+1

i , μk+1
mi and σ k+1

mi //MLE
22: end for
23: if

∑
0�i�I

1� m�M

|μk+1
mi −μk

mi |
|μk

mi | � 0.001 then
24: goto end
25: end if
26: end for
27: end:
28: end procedure

the proper choice to classify the discretized cells. In the expec-
tation step (E-step), the mean and variance for each Gaussian
distribution are fixed, and the datasets are classified. In other
words, the Gaussian probability of the model parameters in
each cell is calculated according to the known mean and
variance. Then we determine to which homogeneous medium
each discretized cell is belonging. In the maximum step
(M-step), the mean and variance for each Gaussian distribution
are recalculated by MLE based on the classification obtained
in the last E-step. In other words, we update the mean and
variance of each Gaussian distribution according to the new
cell classification obtained in the last E-step. This iteration
continues until all the model parameters converge. Because
the application of the machine-learning EM algorithm to the
GMM data is quite mature [42], we will not discuss it in detail
here.

Assume that the whole 3-D inversion domain is discretized
into N cells, and there is only one isolated homogeneous
scatterer embedded in the inversion domain. Suppose the back-
ground medium takes N0 cells and the scatterer takes N1 cells.
So, N = N0 + N1. In GMM, the first Gaussian distribution
corresponds to the background dielectric parameters. The sec-
ond one corresponds to the scatterer dielectric parameters. The
machine-learning EM algorithm is useful to classify the model
parameters in all discretized cells reconstructed by VBIM

 



2002212 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 1. Flowchart of the VBIM-EM hybridization. In Stage I, the traditional VBIM is implemented to reconstruct the model parameters in all the discretized
cells. The EM classification number is also computed in this stage if it is unknown. In Stage II, the EM classification is implemented and partial “background”
cells are removed to compress the inversion domain. In Stage III, the mean values are assigned to the model parameters of homogeneous subscatterers.
Stages I and II are coupled with each other. When the EM classification in Stage II is complete, we return to Stage I to implement the VBIM again.

and estimate the true dielectric parameters. In addition, it is
easy to extend this procedure to account for inhomogeneous
scatterers, which can be divided into several homogeneous
subscatterers. The detailed procedure of EM classification and
parameter estimation for the results from VBIM is given in
Algorithm 1. Here, we want to emphasize three points. First,
the machine-learning EM algorithm usually depends on the
initial solutions. The results from VBIM are used as the initial
solutions of EM. Second, if the number of model parameter
types is more than one, e.g., when both relative permittivity
and conductivity are reconstructed, the joint Gaussian dis-
tribution is used. The label given for a certain cell by EM
classification is the same for all the model parameter types
in that cell. This guarantees the structural consistency. Third,
the covariance matrix is not considered in the joint distribution.
We assume all model parameters, e.g., relative permittivity
and conductivity, are independent of each other in the MLE
employed by the EM algorithm.

D. Hybridization of VBIM and EM

As mentioned in Section IV, in each VBIM iteration,
the machine learning EM algorithm is used to classify the
reconstructed model parameters in all the discretized cells and
estimate the mean values of the background medium as well
as all the homogeneous subscatterers. Before we substitute
these refined model parameters back to the forward model
to implement the BCGS-FFT again, partial cells classified
as “background” will be removed to compress the inversion
domain. Here, the “removed” means the model parameters
in these cells will not be assembled into the discretized
matrix equation in the next round VBIM iteration because
“background” cells have no contribution to the scattered
fields at the receiver arrays. It is worth mentioning that the
removal of “background” cells is only applied to the inversion
VBIM algorithm. For the forward computation by BCGS-FFT,
the computational domain keeps unchanged, i.e., the removed

“background” cells still remain. The whole process of the
hybridization of VBIM and EM can be divided into three
stages. The flowchart is shown in Fig. 1.

1) Stage I (Only VBIM and Computation of the Classifi-
cation Number): The model parameters in all the discretized
cells remaining (i.e., not “removed”) in the inversion domain
are reconstructed by VBIM. If the EM classification number
is known, i.e., we know how many homogeneous media are
existing in the inversion domain, the program directly shifts
to Stage II when VBIM terminates. When the classification
number is unknown, the pure VBIM is implemented P times.
And then we take the following strategy to compute the
classification number. As illustrated in Algorithm 1, there
are I homogeneous subscatterers in the inversion domain.
We guess a number S, which is much larger than I , and
obligatorily perform the EM classification supposing there are
S types of homogeneous media (i.e., there are S Gaussian
distributions in the GMM). As a result, many mean values
of the S Gaussian distributions from MLE will almost overlap.
Then we can set a threshold or several thresholds to merge
the Gaussian distributions. In other words, if the mean values
of two Gaussian distributions are very close, they are treated
as the same Gaussian distribution. Following this procedure,
the redundant Gaussian distributions in the GMM are gradu-
ally removed and the number of the final remaining Gaussian
distributions is the true classification number (i.e., the number
of the homogeneous media in the inversion domain). This
procedure is more clearly shown by the second numerical
example in Section III. In addition, one should note that
the P times implementation of VBIM is necessary before
we merge the Gaussian distributions. The initial solutions
of VBIM are the parameters of the background medium.
Only when the VBIM is implemented several times can
the parameter difference among different homogeneous sub-
scatterers or between the background medium and scatterers
show up.
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Fig. 2. Scheme to remove the “background” cells corresponding to the
shadow regions. εth− and εth+ are two thresholds corresponding the equality
of (3). εb is the true relative permittivity of the background medium.

2) Stage II (VBIM-EM and EM Classification): The proce-
dure of EM classification of the reconstructed model parame-
ters in the inversion domain is shown in Algorithm 1. After
mean values of all the classes are evaluated by MLE, partial
discretized cells classified as “background” will be removed
to compress the inversion domain because they have no con-
tribution to the scattered fields. This will gradually lower the
computation cost of VBIM. As shown in Fig. 2, we first pick
the Gaussian distribution for the background medium, i.e., find
these cells classified as “background.” However, we cannot
directly remove all these cells. The machine-learning EM algo-
rithm is based on the statistical model. Some cells belonging
to the scatterers may be incorrectly judged as “background.”
Therefore, we set a threshold to remove partial “background”
cells with their reconstructed model parameter values close to
the true model parameter values of the background medium.
As shown in Fig. 2, we take the GMM for the relative
permittivity as the example. The nth cell satisfying

|εn − εb|
max

1�n�Nb

(|εn − εb|) � th (3)

will be removed. When the equality of (3) holds, there are two
solutions εth− and εth+, which are labeled in Fig. 2. The Nb

in (3) is the total number of cells classified as “background”
by the EM algorithm, and th is a user-defined variable that
is larger than zero but smaller than one. A larger value
of th means more “background” cells are removed in each
iteration. However, some cells belonging to the scatterer may
be incorrectly removed with a higher probability. When th
is smaller, fewer “background” cells are removed in each
VBIM iteration, and the convergence becomes slower. The
εb is the true background parameter, which is not necessarily
the same as the mean value of the Gaussian distribution for
the “background” cells. Once the thresholds εth− and εth+ are
obtained, the cells corresponding to the shadow region shown
in Fig. 2 will be removed. When there are multiple model
parameters, e.g., relative permittivity and conductivity in the
GMM, we can set independent threshold for each parameter
but use the same th value. Only a “background” cell with all
their model parameters satisfying the similar condition of (3)
will be removed.

One should note that Stages I and II are coupled together.
After partial “background” cells are removed in Stage II,
we need to go back to Stage I to implement the VBIM again,
as shown in Fig. 1. The termination condition of the coupled
Stages I and II includes two aspects, which must be satisfied
simultaneously. The first one is that no “background” cells can

Fig. 3. Configuration of the inversion model with a dual-layer sphere
embedded in the middle layer.

be removed anymore. The second one is that the data misfit
between the measured scattered field and the computed value
by BCGS-FFT-VBIM are smaller than a prescribed value or
the data misfit almost keeps unchanged in the iterations.

3) Stage III (Mean Value Assignments): When Stage II ter-
minates, almost all the “background” cells have been removed.
So, we reduce the EM classification number by one and
implement the EM classification again based on the new
classification number. Finally, we assign the mean values
evaluated by MLE for a certain class to the model parameters
of the cells belonging to that class. Such an assignment is
reasonable for a homogeneous subscatterer in the inversion
domain.

E. Comparisons With Pure VBIM

The hybrid VBIM-EM method proposed in this work uti-
lizes the classical machine-learning technique EM to classify
the reconstructed model parameters in the inversion domain.
Partial discretized cells classified as “background” are gradu-
ally removed in successive iterations. Finally, the assignment
of mean values for the remaining cells in the inversion domain
is performed. The proposed hybrid method outperforms the
pure VBIM in two aspects. One is the improved reconstruction
accuracy. This is because the machine-learning EM algorithm
helps to gradually compress the inversion domain and reduce
the number of unknowns in the discretized data equation.
However, the scattered field data remain unchanged in the
whole process. Consequently, the ill-posedness of the inverse
problem is actually mitigated. The VBIM becomes easier to
find the optimized solution. The other one is the lowered
computation cost of VBIM-EM. Because the inversion domain
is compressed, both the time and memory consumption of
VBIM-EM is lower than those of the pure VBIM. These two
aspects are shown in the first numerical example in Section III.

F. Comparisons With Other Hybrid Methods

In the proposed hybrid VBIM-EM, the “background” cells
are gradually removed in successive iterations. The iterative
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Fig. 4. Histograms of the reconstructed model parameters in different iteration steps. From left to right, they are in 1st, 2nd, 4th, 7th, 11th, 17th, and 18th
step. The first 17 steps belong to the coupled Stages I and II. The last 18th step belongs to Stage III. (a)–(g) are for relative permittivity. (h)–(n) are for
conductivity. The dotted curves are GMM curves used to fit the histograms.

Fig. 5. Reconstructed 2-D slices at z = 0.7 m corresponding to the iteration steps given in Fig. 4. Dotted circles denote the true scatterer.

multiscaling approach (IMSA) proposed in [43] and [44]
improves the inversion resolution by means of the similar
method. However, VBIM-EM and IMSA are different in
several aspects. In VBIM-EM, the FWI loop, i.e., VBIM is
only implemented once. In IMSA, it is actually the inner
loop of two nested loops and thus implemented several times.
In IMSA, the grid discretization is dynamically adjusted.
When the whole process approaches the end, the resolution can
be very high. However, in VBIM-EM, the grid discretization
is fixed. When the whole process approaches the end, the res-
olution remains unchanged, although the inversion domain
becomes smaller. In each outer loop of IMSA, the inversion
domain is compressed. In the full-wave iterations, the inversion
domain keeps the same. However, in VBIM-EM, the inversion
domain is compressed as the full-wave iterations (i.e., VBIM)
continue. In addition, one should note that the proposed hybrid
VBIM-EM is also different from the previous work [45], [46]
in which only the “background” cells and the “scatterer” cells
are distinguished. However, in this work, different subscatter-
ers are also distinguished and the model parameters of each
kind of medium are also estimated by MLE.

III. NUMERICAL RESULTS

In this section, we use three numerical examples to verify
the VBIM-EM algorithm. The background medium includes
three layers. The top and bottom layers are air. The scatterers
are embedded in the middle layer. The transmitter and receiver

arrays are placed in the top and bottom layers. In the first case,
the scatterer is isotropic and homogeneous. The classification
number is known. It is used to demonstrate the feasibility
of VBIM-EM and show its advantage over the pure VBIM.
In the second case, there are three homogeneous scatterers
embedded in the middle layer. Two scatterers have the same
model parameters. We will show how to determine the clas-
sification number for EM and test the antinoise ability of
VBIM-EM in this case. In the third case, the scatterer is
arbitrary anisotropic and inhomogeneous. It will be divided
into several homogeneous subscatterers by the EM algorithm.
All the measured scattered field data are simulated by the
BCGS-FFT solver. The th in (3) is set as 20% for all
three cases and this value is also verified as an appropriate
value by all three cases. All the inversions are performed
on a workstation with 20-cores Xeon E2650 v3 2.3 G CPU,
512 GB RAM.

A. Dual-Layer Sphere Embedded in the Middle Layer

As shown in Fig. 3, the inner radius of the sphere is
r1 = 0.2 m and its outer radius is r2 = 0.4 m. Its center is
located at (0, 0, 0.7) m. The dielectric parameters of the inner
sphere and the background are the same. They are ε = 2.0 and
σ = 2 mS/m. The outer sphere has dielectric parameters
ε = 3.2 and σ = 6 mS/m. The inversion domain D enclosing
the object has the dimensions of 1.2 m × 1.2 m × 1.2 m.
Its center is also located at (0, 0, 0.7) m and is divided into
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Fig. 6. Ground truth and the 2-D and 3-D inversion results by VBIM and
VBIM-EM. (a)–(d) are the 2-D and 3-D ground truth profiles. (e)–(h) are the
2-D and 3-D profiles reconstructed by VBIM. (i)–(l) are the 2-D and 3-D
profiles reconstructed by VBIM-EM.

60 × 60 × 60 cells. The size of each cell is �x = �y = �z
= 0.02 m. So, there are totally 432 thousand unknowns to
be reconstructed. The 98 transmitters are uniformly located
in two 4.2 m × 4.2 m planes at z = −0.2 m and z =
1.6 m, respectively. The operating frequency is 150 MHz. The
scattered fields are collected by 128 receiver arrays uniformly
located in two 5.6 m × 5.6 m planes at z = −0.1 m and z =
1.5 m, respectively. Thus, there are 150 528 data equations if
we detach the real and imaginary parts of the scattered fields.

In each iteration step, we use the GMM including two
Gaussian distributions to fit the reconstructed model parame-
ters from VBIM. Fig. 4 shows the histograms of reconstructed
model parameters fitted by GMM curves in the 1st, 2nd, 4th,
7th, 11th, 17th, and 18th steps. The first 17 steps belong
to the coupled Stages I and II. The last 18th step belongs
to Stage III. Fig. 5 shows the xy plane 2-D slices of the
VBIM results in these steps. At the beginning, the model
parameters in all discretized cells in the whole inversion
domain are assigned as the background parameters, as shown
in Fig. 5(a) and (h). The histogram in Fig. 4 shows a straight
line. In following steps, the “background” cells are gradually
removed by VBIM-EM and the peak value of the Gaussian
distribution curve for the “background” medium decreases
synchronously. In the 2nd step, the “background” cells are
much more than the “scatterer” cells. Only one Gaussian
distribution peak obviously shows up in the histogram. Cor-
respondingly, in Fig. 5(b) and (i), the scatterer only has an
embryo. However, in the 4th step, a lot of “background”
cells have been removed. Two peaks obviously show up in
the histograms. The general shape of the sphere can be seen
in Fig. 5(c) and (j). As the VBIM-EM iterations going on,

Fig. 7. Converging processes of VBIM with and without the EM algorithm.
(a) Variations of data misfits of the scattered fields in different iteration steps.
(b) Ratio of unknowns in different iteration steps to the total unknowns in the
first step.

more and more “background” cells are removed. And in the
17th step, most “background” cells have been removed. The
pattern of the sphere is clearly shown in Fig. 5(e) and (m).
In the last 18th step (belonging to Stage III), the model
parameters of the scatterer are mandatorily assigned as the
mean values from VBIM-EM, leading to the clear shapes
shown in Fig. 5(g) and (n).

Fig. 6 shows the comparisons of ground truth and the final
reconstructed model parameters by VBIM with and without
the machine-learning EM algorithm. The dotted circles in the
2-D slices denote the true location of the dual-layer sphere.
Clearly, the VBIM-EM outperforms VBIM. Not only the
retrieved values of model parameters are more precise when
the machine-learning EM algorithm is applied but also a better
shape match is provided by VBIM-EM.

To quantitatively compare the performance of VBIM-EM
and VBIM, we use the data misfit and model misfit defined in
(8) of [35]. The data misfit indicates how well the measured
scattered field at the receiver arrays matches the computed
value from BCGS-FFT-VBIM. The model misfit indicates
how well the reconstructed model parameters in the inversion
domain match their true profiles. Fig. 7(a) shows the variations
of data misfits of the scattered fields in each iteration step.
Several observations are made. 1) VBIM-EM converges faster
than VBIM. But it is not as stable as VBIM because of the
interference of EM. 2) Before the last step, the data misfits in
VBIM-EM are obviously smaller than those in VBIM. 3) In the
last step, the data misfit of VBIM-EM suddenly increases.
The reconstructed shape of the sphere does not exactly occupy
the true location. Thus, the mandatory assignments of mean
values in Stage III of VBIM-EM change the model parameters
in some cells greatly, leading to the sudden increase of the data
misfit. Fig. 7(b) shows the variations of the remaining cells in
the computation domain in each iteration step. As can been
seen, the number of unknowns decreases quickly in the first
five steps for VBIM-EM. After this, it changes slowly. This is
because after the 5th step most “background” cells have been
removed and only a small number of cells are removed in the
following steps. By contrast, in VBIM, the cell number keeps
unchanged in all iterations. This also confirms the low data
misfits of VBIM-EM before the last step shown in Fig. 7(a).
Because the computation domain is compressed by the EM
algorithm, the number of unknowns is decreased. As a result,
the uncertainty of the solutions of VBIM is mitigated. When
the iterations terminate, the model misfits of permittivity and
conductivity of the reconstructed results by VBIM are 11.4%

 



2002212 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE I

VARIATIONS OF WEIGHTS AND MEAN VALUES OF ε AND σ FOR ALL THE EM CLASSES IN DIFFERENT ITERATIVE EM CLASSIFICATION STEPS

TABLE II

BACKGROUND PARAMETERS OF THE MIDDLE LAYER AND THE TRUE AND RECONSTRUCTED MODEL PARAMETERS OF SCATTERERS

Fig. 8. Iso-surfaces of the final reconstructed structure. (a) Whole sphere.
(b) Dissected half sphere.

and 38.6%, respectively. However, they are 5.3% and 13.4%
when VBIM-EM is adopted. In each iteration step, the VBIM
takes 101 min and consumes 249 GB memory. By contrast,
the VBIM-EM only needs 15 min and 38 GB memory in
the last iteration step although they are the same as those of
VBIM at the beginning. Obviously, VBIM-EM outperforms
VBIM for both the reconstruction accuracy and computation
cost. Fig. 8 shows the iso-surfaces of the structure of the
reconstructed dual-layer sphere. Because the inner sphere has
the same dielectric parameters as those of the background
medium, the sphere appears hollow.

B. Three Objects Embedded in the Middle Layer

As shown in Fig. 9, there are three homogeneous objects
embedded in the inversion domain. The dimensions of the
cuboid are 0.32 m × 0.32 m × 0.64 m. The cube has the
dimensions of 0.32 m × 0.32 m × 0.32 m. The radius of
the sphere is 0.28 m. The dielectric parameters of the second
layer are the same as those in the last case. The cuboid
and the cube have the same model parameters ε = 3.6 and
σ = 10 mS/m. The relative permittivity and conductivity of

Fig. 9. Configuration of the inversion model with three objects embedded
in the middle layer. The cuboid and cube have the same model parameters.

the sphere are 2.8 and 6 mS/m, respectively. The inversion
domain D enclosing the three objects has the dimensions
of 2.4 m × 1.0 m × 0.8 m. Its center is located at (0, 0, 0.5) m
and is divided into 120 × 50 × 40 cells. The size of each
cell is �x = �y = �z = 0.02 m. The 100 transmitters are
uniformly located in two 5.4 m × 2.4 m planes at z = −0.2 m
and z = 1.2 m, respectively. The operating frequency is also
150 MHz. The scattered fields are collected by 144 receivers
arrays uniformly located in two 6.6 m × 3.0 m planes at
z = −0.1 m and z = 1.1 m, respectively.

Because the cuboid and cube have the same dielectric
parameters, there are totally three kinds of homogeneous
media in the inversion domain. If this a priori information is
unknown, we first implement the pure VBIM four times (i.e.,
P = 4 in the flowchart of Fig. 1). The inversion results are
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Fig. 10. Ground truth and the 2-D and 3-D inversion results by VBIM and VBIM-EM. (a)–(d) are the 2-D and 3-D ground truth profiles. (e)–(h) are the
2-D and 3-D profiles reconstructed by VBIM in the 4th step, which will be used to compute the classification number. (i)–(l) are the 2-D and 3-D profiles
reconstructed by VBIM-EM in the last step of coupled Stages I and II. (m)–(p) are the 2-D and 3-D profiles obtained by the assignments of mean values in
Stage III.

Fig. 11. Inversion results of the three objects by VBIM-EM when 20 dB
noise is added. (a) and (b) are 2-D profiles. (c) and (d) are 3-D profiles.

shown in Fig. 10(e)–(h). We can see the difference between
the scatterers and the background medium is obvious enough
to estimate the classification number. We then guess there
are totally nine types of homogeneous media in the inversion
domain, which are much more than the true homogeneous
medium types. Then, based on the reconstructed model para-
meters in the fourth step, we perform the EM classification
iteratively. The results in each step are listed in Table I. In each
iteration step, we reduce the classification number by one if
the estimated parameters by MLE satisfy one of the following
conditions: 1) the weight of a certain class is less than 1% and
2) the difference of the mean values for relative permittivity
between two classes is less than 0.3 and the difference for
conductivity is less than 1 mS/m. The weight in (1) is the ratio
of discretized cells belonging to a certain class with respect
to the total cells in the inversion domain. And its selection is

Fig. 12. Configuration of the inversion model with nested cubes embedded in
the middle layer. The inner cube dimensions are 0.24 m × 0.24 m × 0.24 m
and the outer cube dimensions are 0.4 m × 0.4 m × 0.4 m.

empirical. For example, if the number of total cells classified
by EM as a certain class is less than 2400 and because the
number of total cells in the inversion domain is 240 000 in
this case, the weight is less than 1% for that class and thus
this class will be removed. When both (1) and (2) are not
satisfied, the iterative EM classification procedure summarized
in Table I terminates. The number of remaining classes is
the true classification number. One interesting observation is
that there is one class that has an obvious larger weight than
the weights of all other classes in all the iteration steps for
both noise-free and noisy cases. Definitely, this class is the
background medium.

When 20 dB noise is added, the above-mentioned iterative
procedure can also compute the correct classification number,

 



2002212 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 13. Final reconstructed 3-D profiles of the nested cubic objects by VBIM-EM. (a)–(f) are for the relative permittivity. (g)–(l) are for the relative
permeability. (m)–(r) are for conductivity.

Fig. 14. Final reconstructed 3-D profiles of the nested cubic objects by pure VBIM. (a)–(f) are for the relative permittivity. (g)–(l) are for the relative
permeability. (m)–(r) are for conductivity.

as summarized in Table I. By comparing the reconstructed
2-D and 3-D profiles in Figs. 10(m)–(p) and 11, we can see
that the noise interference distorts the reconstructed shapes
of the homogeneous scatterers. Specifically speaking, some
discretized cells in the periphery of a scatterer are not correctly
classified by the EM algorithm when noise is added. This
incorrect judgment further interferes with the final assigned
mean values, which is clearly shown in Fig. 11. The mean
values of the reconstructed relative permittivity for the cuboid
as well as cube and the sphere are 3.58 and 2.79 when noise
free. They are 3.36 and 2.78 when 20 dB noise is added.
The mean values of the reconstructed conductivity for the
cuboid as well as cube and the sphere are 9.87 and 5.93 mS/m
when noise free. They are 8.59 and 5.88 mS/m when 20 dB
noise is added. We can see that both the reconstructed

shapes and model parameters are still reliable even with noise
contamination.

C. Nested Cubes Embedded in the Middle Layer

In this case, we apply the VBIM-EM algorithm to the recon-
struction of nested cubes with arbitrary anisotropic parameters
embedded in the uniaxial middle layer. As shown in Fig. 12,
the nested cubes include the inner and outer layers. The
dimensions of the inner cube are 0.24 m × 0.24 m × 0.24 m,
and those of the outer cube are 0.4 m × 0.4 m × 0.4 m. The
true dielectric parameters of the middle layer, the inner cube,
and the outer cube are listed in Table II. The dielectric tensors
are assumed symmetrical.

The inversion domain enclosing the objects has the dimen-
sions of 0.6 m × 0.6 m × 0.6 m, and its center is located
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Fig. 15. Final reconstructed 2-D profiles of the nested cubic objects by
VBIM-EM. (a)–(c) are the slices at z = 0.4 m for the diagonal relative
permittivity. (d)–(f) are the slices at z = 0 m for the diagonal relative
permeability. (g)–(i) are the slices at z = 0 m for the diagonal conductivity.
Dotted boxes denote the outer and inner cube boundaries.

at (0, 0, 0.4) m. It is divided into 27 000 cells. The size of
each cell is �x = �y = �z = 0.02 m. So, there are totally
486 000 unknowns to be reconstructed. The 72 transmitters are
uniformly placed in two 1.0 m × 1.0 m planes at z = −0.2 m
and z = 1.0 m, respectively. Two operation frequencies
130 and 160 MHz are chosen. The scattered fields are collected
by two arrays of 98 receivers, which are uniformly located at
z = −0.1 m and z = 0.9 m planes, respectively. Thus, there
are totally 169 344 data equations.

Fig. 13 shows the inverted 3-D profiles of the nested cubic
objects by VBIM-EM, whereas Fig. 14 shows reconstructed
profiles by pure VBIM. We can see that the pure VBIM
can only find the approximate location of the inhomogeneous
scatterer. The boundary between the outer cube and the inner
cube is not discernible. Fortunately, this defect is effectively
remedied by the proposed hybrid VBIM-EM. Both the shapes
and dielectric parameters are well reconstructed. They are
more vividly displayed by the 2-D slices in Fig. 15. Although
the reconstructed cross sections of both the inner and outer
cubes are not exact squares, the general shapes match the
squares. However, as the machine-learning EM is a statistical
method, the boundaries of the cubes cannot be precisely
located, and notches show up near the boundaries.

IV. CONCLUSION AND DISCUSSIONS

In this article, the traditional FWI method VBIM is
hybridized with the machine-learning technique EM. In each
VBIM-EM iteration, the VBIM updates the model parameters
of the discretized cells in the inversion domain. Then the EM
algorithm is used to classify these cells and estimate the
mean model parameters for the background medium and the

homogeneous subscatterers. In the following, partial “back-
ground” cells are removed. This iteration process continues
until no “background” cell can be removed anymore and
the data misfit between the measured scattered field and the
reconstructed field reaches the stop criterion. When the number
of homogeneous media in the inversion domain is unknown,
we can implement the pure VBIM for a limited number of
iterations. Then an iterative EM classification procedure is
adopted to compute the true homogeneous medium number
before we carry out the hybridized VBIM-EM iterations.
Numerical examples show such an iterative EM classification
procedure is reliable even when the scattered field data are
contaminated by 20 dB noise.

Both the isotropic and anisotropic inverse scattering scenar-
ios are used to verify the proposed hybrid method. Compar-
isons of the reconstruction of isotropic model parameters show
that VBIM-EM outperforms VBIM for not only the higher
reconstruction accuracy but also the lower computation cost.
When multiple homogeneous scatterers have the same model
parameters, the proposed iterative EM classification method in
the second numerical example can identify them and correctly
treat them as the same class of medium.

We assume each scatterer is homogeneous and an inhomo-
geneous scatterer can be divided into several homogeneous
subscatterers. Such an assumption is reasonable in many
practical applications such as microwave imaging of breast
cancer [47] and noninvasive inspection of crystals [48]. In an
extreme situation in which the scatterer has the continuously
varying medium, the assumption of the GMM is not reasonable
for model parameters. This issue will be addressed in our
future work by using other machining-learning techniques
or adding some gradient constraints to the unknown model
parameters in the cost function.
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